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ON EQUILIBRIUM OF A FREE NONLINEAR PLATE * 

L. P. LEBEDEV 

Theorems concerning the solvability of two problems of nonlinear 

tropic plates are proved. Problem 1 concerns the equilibrium of 

theory of aniso- 

a plate clamped 
at three points and acted upon by an external load, and Problem 2 concerns the 
equilibrium of a plate free from geometrical constrains, under the action of exter- 

nal forces. Solvability of certain fundamental boundary value problems of the non- 

linear theory of plates (K&m& equations) was dealt with in /l-44/. 

1, Basic relationships and assumptions, The equations of equilibrium of an 
anisotropic plate with variable moduli of elasticity can be written in the following integro- 

differential form: 

(W.x)I = --I@, W, xl + L"x dQ + S(NX -t M,xx -i Mzxu) ds 

(n,.n)z=lw,w. nl (nIr+Of 

where we use the following notation: 

(1.1) 

Here w and @are the flexure and stress functions; F,N,.M, and M, describe the external load 
applied to the plate; the lower indices x, y denote differentiation with respect to the corres- 

ponding variables belonging to a two-dimensional, singly connected, bounded region D with a 

piecewise smooth boundary r; x and n are arbitrary admissible variations of the functions w,@ 

respectively satisfy the conditions within the brackets in (l.l), and the letters D,E and G 
accompanied by various indices denote the elastic characteristics of the plate. 

The first equation of (1.1) expresses the principle of virtual displacements in the 

theory of plates, and the second equation is an equation of compatibility. Using the accept- 

ed variational methods we can obtain, from these equations, the K&_-m& equations of equili- 
brium of the plate in the differential form /l--3/, as well as the inherent boundary conditions 

which shall not be given here. 

To complete the formulation of the problems 1 and 2, we must also write down the bound- 
ary conditions for the function @ 

(PIr=~(r=O 
(1.2) 

and, in the case of Problem 1, also the conditions 

w (Xk, yh_) = 0 (k = 1, 2, 3) (1.3) 

where (x~, yk) are points of the region Q not on the same straight line. The condition (1.3) 

should also be satisfied by the functions x from the first equation of (1.1). The region & 

is such, that for the Sobolev spaces WJz)(Q)the imbedding theorems /5/ hold. 
We assume that the elastic characteristics of the plate are all bounded, measurable func- 

tions of the variables x,y and satisfy some energy relations /6/. These relations imply, in 

particular, that a constant m>O exists such that 

Ilull > ml141s, l141z > mlblh. vu E 0’) GY (1.4) 

II u II? = (u.& II 2~ 112~ = (u.u)z. II u lh2 = @A 2u2,, + &,P 
?I 

2, Auxilliary assumptions, The restrictions shown above lead to the following in- 

equalities: 
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where the constant Mis independent of U. From this, together with (1.4), we find that the 
norms ll.llk(li = 1,2,3) are equivalent on the space of classes of the Sobolev functions Lz(*) (Q) 

/5/. The difference between the functions belonging to one and the same class of the classes 

L,(2)(Q) has the form of a certain polynomial ax+ by + c. The forms (u.L')~ (X: = 1, 2) are scalar 
products on &(')(Q). In what follows, the space &(‘)(n) will be considered with the n0XTl 

1141 . 

Definition 1, We shall call the space H, (space H,) the closure of the set of all 
functions belonging to C(*)(Q) satisfying the relations (1.3) in the norm 1j.\\1 (respectively, 

the boundary conditions (1.2) in the norm I.&,). 

From the properties of the norm of space H, it follows that H, coincides with the 
Sobolev space w,"(")(g). 

Lemma 1, Space His a subspace of the Sobolev space W,(a) (Q), and 

with the constants m, and M, independent of u. 

The right-hand side of the inequality (2.1) is trivial. The left-hand side can be prov- 
ed by'reductio ad absurdum', with the continuity of the imbedding operator carrying 

into c@)(Q)/5/ taken into account. The spaces HI 
W&Z) (8) 

and H, are obviously Hilbert spaces. 

Lemma 2, Space H, and space L2(2)(Q) with norm ll.ljl are isomorphic and isometric.Every 

class of functions of Lc2 @)contains a representative of the space H, , and they canbe put 
in 1:l correspondence. 

L 'p'(Q;r~fl L 
emma 1 implies that every element of H1 appears in some class of elements of 

Conversely, 

1oPnging to 

we take an arbitrary representative U(S,Y) of any class of elements be- 

L,(2) (P) ; by virtue of the Sobolev imbedding theorem we have ~(5, y)~Cf”)(I2)~. Its 
sum u*(z,y) with the polynomial az+ by+ c remains in the class in question. The points (zk,yh.) 

(Ir = 1,2,3) do not lie on the same straight line, therefore constants (I, b,c can always be 

found such that condition (1.3) holds for the element u*(z,Y). Clearly, U’ (z, Y) E HI. The 

fact that the norms on H, and L,'2)(Q) coincide, completes the proof. 

Lemma 3, Let u E Hz, q, 9 E Wp (12). We have the following relations (ax are arbitrary 

constants) : 

[u, ‘p? cpI= I% ‘9, ul= 2 1 (&/ - %x&J UdQ (2.2) 
6 

[IL, cp + a,.2 + a,y + a3, II, + a$2 + GY + a,1 = [u, 9, *I 
(2.3) 

The relations (2.2) and (2.3) can be verified directly in the case of smooth functions. The 

general case is proved by carrying out the closure, with the imbedding theorems in the space 

W,Cz)(&) taken into account. 

3, Existence of a generalized solution, Definition 2, We shall call a gener- 

alized solution of Problem 1 (Problem 2) the following pair of elements: 

w E EI,, 0 G H, (w E Liz) (Cl), Q E H,), 

satisfying the integro-differential equations (1.1) for any functions 

i: (-: H,, q t: Hz (x E LJ2) (Q), 11 E H,) 

Since in Problem 2 the element XE L2(2)(Q) is determined with the accuracy of up to the 
polynomial az + by + c, it follows necessarily from (1.1) that 

c F (es $ by + c) dQ + j (IV (aa. + by + c) + uJI, + 6N,) ds = 0 (3.1) 
I1 

for any constants a, b, C. In the mechanical terms the above equation means that the load is 
self-equilibrating. 

Theorem 1, Let the following conditions hold: 

p .z I, (Q), iv c L (I'), M,, M, E L" (r) (3.2) 

where pjl. Then there exists at least one generalized solution of Problem 1. All solutions 
of Problem 1 fall within a sphere of sufficiently large radius, belonging to the space H, X H,. 

To prove the theorem we reduce the solution of Problem 1 in the generalized formulation, 
to the solution of the equivalent operator equation in win space HI. It is this latter equa- 
tion that will be inspected below for solvability. 

To Sobolev theorems of imbedding and (2.2) together imply that the right-hand side of the 
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second equation of (1.1) represents, for a fixed W6ZH,, a continuous linear functional in 
T) in the space Hp. According to Riess theorem on representation of a continuous linear 
functional in a Hilbert space, this functional determines a nonlinear operator R acting from 
the space H,into H, 

(Rw.q)z =: lw, w, ql (3.3) 

Lemma 4, Operator R acting from H, into H, is strictly continuous. 

proof, Let w~-w,, as k-m weakly in HI. Every pair of the corresponding terms of 
the difference 

(Rw,q), - (Rq,qJ2 = Is, wti, wk] - [q, EL’,,> 11~~1 

(the consequence of (2.2) is estimated from above, using the Holder inequality, by 

mz II u lb (II Wk II1 + II =o Ill) (II Wkr -I wL& kyn, + II WLv - WI& ICyo,) 

Here m, is a constant independent of 7~~ and x. According to the theorem on complete con- 
tinuity of the operator imbedding W?)(Q) into w:')(Q) /5/, the terms within the round brackets 
tend to zero as k-co. Choosing r = Rat - Rw,, completes the proof. 

The relation 
'D= Rw (3.4) 

follows from the second equation of (1.1) and (3.3). The above expression for @ is substitut- 
ed into the first equation of (1.1). The right-hand side of the first equation of (1.1) now 
becomes, for a fixed function w=Hr, a continuous linear functional with respect to the 
variable x. This follows from the conditions of Theorem 1 and the Sobolev imbedding theorems. 
Applying, as before, the Riesz theorem, we can write the right-hand side of the first equation 
of (l.l), with (3.4) taken into account, in the form (Gw.x)~. Here Gis a nonlinear operator 
acting in H,. Thus the solvability of Problem 1 is equivalent to the solvability of the operat- 
or equation 

w= Gw (3.5) 
in the space HI. 

Lema 5, Operator G acting in the space H, is strictly continuous. 
The proof is analogous to that of Lemma 4. 
Next we construct the functional Y(w, t)= ((w - tGw).w),. Using the fact that the operat- 

or G is explicit, we reduce this functional to the form 

and from this follows the estimate Y(w, t)> Ra- tcR, R =Ilujjl, where c denotes the finite norm 
of the functional 

T(w)= 5 FwdQ I- s(iVw + ~Vl~w,+ Afzws)ds 
n I 

in space H, with respect to the variable w. From this we have, for TV IO, I] and R>2c, 

Y (w, t) > '/* R2 

The last inequality, Lemma 5 and the Schauder-Leray principle /7/ together yield Lemma6,which 
completes the proof of Theorem 1. 

Lemma 6, The rotation /7/ of a completely continuous field I-G on the sphere l@jll = 
R of sufficiently large radius R, is equal to plus unity. At least one solution of the op- 
erator equation (3.5) exists within this sphere. Moreover, all solutions of the operator eq- 
uation (3.5) lie within this sphere. 

We have the following theorem for Problem 2. 

Theorem 2, Let the conditions (3.2). hold. Problem 2 will have a solution in the gener- 
alized formulation if and only if the external load is self-equilibrating, i.e. if the equation 
(3.1) holds for any value of the constants a, b,c. In addition, all generalizedsolutions w,Ct, 
of Problem 2 lie within a sphere of sufficiently large radius belonging to the space L,(')(Q) \' 
Hz. 

The necessity of the condition (3.1) for the solvability of the problem has already been 
shown above. 

Sufficiency, Application of Lemma 2 reduces the problem of solvability of Problem 2 
to that of the solvability of Problem 1. Indeed, out of any class of functions L,(s) (Q), we 
can choose a representative function belonging to the space H,. Under such a choice,Problem 
2 coincides formally with Problem 1 and therefore has a solution by virtue of Theorem l-Return 
to the initial Problem 2 is trivial, since both parts of the equations (1.1) remain unaltered 
when the functions wand x of H, are supplemented by adding the zero of the space L?(2) (Q) , 
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the zero representing a set of all polynomials of the form az + by + c (according to Lemma 3). 
This completes the proof of the theorem. 

Note, Using Lemma 6 we can justify in an analogous manner /6/, the use of the Bubnov- 
Galerkin method in Problems 1 and 2. 

The author thanks I. I. Vorovich for formulating the problem. 
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